Factors affecting productivity of Vimek 404 T5 harvester in pre-commercial thinning & Fields of application of Kranman Bison 10000 and other small forwarders

Scientific conference “Industrial Scale Bioeconomy and its Requirements” 14–16 June 2017 in Lappeenranta, Finland

Agris Zimelis, Santa Kalēja, Per Olof Johansson, Andis Lazdiņš, Gints Spalva, Guntis Saule, Gatis Rozītis, Guna Petaja
Latvia State Forest Research Institute “Silava”
e-mail:santa.kaleja@silava.lv

The study was implemented within the scope of the JSC “Latvia state forests” funded research project 'Research program on forest biofuel and mechanization of forest operations' (agreement No 5-5.9_003v_101_16_47)

LSFRI Silava
Riga street 111
Salaspils LV-2169, Latvia
Phone: +37167942555, e-mail: inst@silava.lv
www.silava.lv
Study sites
Typical study sites

<table>
<thead>
<tr>
<th>ID</th>
<th>Stand type</th>
<th>Dominant species</th>
<th>Area. ha</th>
<th>Number of trees per ha</th>
<th>D<sub>13</sub>. cm</th>
<th>H. m</th>
<th>Growing stock. m³ ha<sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>601-186-12</td>
<td>Vacciniosa</td>
<td>Pine</td>
<td>3.4</td>
<td>1 917</td>
<td>11</td>
<td>12</td>
<td>138</td>
</tr>
<tr>
<td>601-186-16</td>
<td>Vacciniosa</td>
<td>Pine</td>
<td>3.3</td>
<td>2 925</td>
<td>16</td>
<td>16</td>
<td>575</td>
</tr>
<tr>
<td>602-28-19</td>
<td>Oxalidosa</td>
<td>Spruce</td>
<td>1.9</td>
<td>2 354</td>
<td>11</td>
<td>8</td>
<td>167</td>
</tr>
<tr>
<td>602-32-8</td>
<td>Myrtilloso-</td>
<td>Spruce</td>
<td>1.3</td>
<td>3 350</td>
<td>9</td>
<td>11</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>sphagnosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>602-46-29</td>
<td>Hylocomiosa</td>
<td>Spruce</td>
<td>0.7</td>
<td>2 300</td>
<td>10</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>602-74-7</td>
<td>Oxalidosa</td>
<td>Birch</td>
<td>2.7</td>
<td>4 233</td>
<td>10</td>
<td>12</td>
<td>285</td>
</tr>
<tr>
<td>711-358-5</td>
<td>Oxalidosa</td>
<td>Spruce</td>
<td>3.5</td>
<td>1 104</td>
<td>9</td>
<td>12</td>
<td>62</td>
</tr>
</tbody>
</table>
Why small harvester?

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Numerical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>In production since 2011, continuously improved from model to model</td>
</tr>
<tr>
<td>Price</td>
<td>Basic setup 180000 €</td>
</tr>
<tr>
<td>Operating weight</td>
<td>4 100 kg</td>
</tr>
<tr>
<td>Engine output</td>
<td>36.4 rpm. min.(^{-1}) or 44.7 kW</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Length 3.35 m, width 1.84 m</td>
</tr>
<tr>
<td>Crane max. reach</td>
<td>4.3 m</td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>4-4.5 L hour</td>
</tr>
<tr>
<td>Felling head</td>
<td>Keto Forst</td>
</tr>
</tbody>
</table>
Summary of study results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spring trials</th>
<th>Summer trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracted trees</td>
<td>13993</td>
<td>8073</td>
</tr>
<tr>
<td>Extracted amount, m³</td>
<td>1109</td>
<td>350</td>
</tr>
<tr>
<td>Average tree D_{1.3}, cm</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Average stem volume, m³</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>Average productivity</td>
<td>6.5</td>
<td>5.1</td>
</tr>
<tr>
<td>Average productivity without driving</td>
<td>6.9</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Average productivity of harvesting depending from dimensions of trees

\[
f(x) = -0.0024x^3 + 0.0837x^2 - 0.0925x
\]
\[R^2 = 0.9894\]

\[
f(x) = -0.0023x^3 + 0.0920x^2 - 0.2593x
\]
\[R^2 = 0.9854\]
Comparison of productivity of different harvesters and felling heads
Impact of forwarder on prime cost of harvesting

Harvesting cost, € m⁻³

- Vimek 404 T5 + Kranman Bison 10000
- Vimek 404 T5 + John Deere 810E
- Vimek 404 T5 + Logbear F4000
Conclusions & recommendations

- In spring harvesting productivity was significantly higher, mostly because of better visibility (no foliage on deciduous trees).
- No impact of scarification (micro-relief) was found; however, productivity grows faster in artificially regenerated stands with increase of tree dimensions.
- Harvesting with 2 “ghost tracks” between strip-roads significantly decreased productivity, it is recommended to use 1 “ghost track”.
- Productivity on poor soils is higher in comparison to rich soils, probably due to thicker branches and longer crown.
- Cost of Vimek 404 T5 harvester working hour is 44 €, it is heavily affected by utilization rate and assumptions on personnel costs.
- Vimek 404 T5 is more efficient than conventional harvesters in pre-commercial and the 1st thinning, final felling (if D_{1.3} < 20 cm) and cleaning operations (ditches, abandoned farmlands).
- Combination with small forwarder (Vimek 610 or Logbear F4000) is more efficient than combination with middle class forwarder because of narrow strip-roads and high productivity values at large number of assortments.
Field trials with Kranman Bison 10000
700 hours of monitoring data in 2016
Specifications

- Kranman Bison 10000 6WDIs in production since 2015 as upgraded version on 8000 6WD model.
- Price of basic setup 40 584 €, cost of setup used in studies 60 000 €.
- Forwarder can be equipped with tracks, simple heater and even air conditioner in cabin.
- Width 1.55 m, length up to 6.10 m, weight 1.52 tonnes, load capacity 2.5 m³.
- Crane length 3.3 m (can lift up to 400 kg at full extend).
- Fuel consumption 2 L per hour (0.5 L m⁻³).
Summary of study results

- Width of corridors – 2-2.5 m.
- Average load – 2.0 m³.
- Average driving distance – 235 m.
- Time consumption: loading in – 13.5 min., loading out – 5.4 min. per load.
- Average productivity – 3.9 m³ per work hour (15% less in extreme conditions).
- Driving speed – 47 m min.⁻¹ (heavily affected by presence of ruts and large stumps).
- Forwarding cost at 1172 productive hours per year – 7.14 € m⁻³.
- Total harvesting & forwarding cost:
 - mechanized harvesting with Vimek 404 T5 – 16.2 € m⁻³;
 - harvesting with chainsaw – 18.6 € m⁻³.
Impact of driving distance and utilization rate on prime cost of roundwood
Potential impact of load transfer on forwarding cost

- Kranman without load transfer
- Kranman with load transfer
- Additional cost due to load transfer

Driving distance, m

Forwarding cost, € m⁻³

Additional cost due to load transfer, € m⁻³
Fields of application of Kranman Bison 10000 and similar forwarders

- The main advantages of Kranman Bison 10000 are small fuel consumption, small weight (*can operate on organic soils*), mobility (*can be transported with ordinary pickup*), manoeuvrability (*2.5 m wide corridor is enough*).
- The main disadvantages – small load and crane lifting capacity, limited space, vibration and noise pressure in cabin.
- Forwarder is recommended for small felling sites with small trees, including thinning, sanitary fellings and final felling.
- Optimal setup – team of 3-4 workers with chainsaws and Kranman Bison 10000 forwarder, pickup and trailer. Optimal utilization rate – at least hours annually (3372 m³).
- In state forests 30 teams (*90-120 workers and 30 small forwarders*) can take over motor-manual operations in thinning.